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A non-itcrativc method for handling the coupling of the implicitly discretised time-depen- 
dent fluid flow cquationb is described. The method is based on the use of pressure and velocity 
as dependent variables and is hence applicable to both the compressible and incompressible 
versions of the transport equations. The main feature of the technique is the splitting of the 
solution process into a series of steps whcrcby operations on pressure are decoupled from 
those on velocity at each step. with the split sets of equations being amenable to solution by 
standard techniques. At each time-step, the procedure yields solutions which approximate the 
exact solution of the difference equations. The accuracy of this splitting procedure is assessed 
for a linearised form of the discretised equations. and the analysis indicates that the solution 
yielded by it differs from the exact solution of the difference equations by terms proportional 
to the powers of the time-step size. By virtue of this. it is possible to dispense with iteration. 
thus resulting in an efhcient implicit scheme white retaining simplicity of implementation 
relative to contemporary block simultaneous methods. This is verified in a companion paper 
which pr-esents results of computations carried out using the method. se 1956 Academic Press, Inc. 

Implicit finite-difference schemes for solving the equations governing the flow of 
fluids are frequently (and are fast becoming more so) favoured over their explicit 
counterparts. This is because of the unconditional stability of the former as con- 
trasted with the stability of explicit methods which is sub.ject to severe restrictions 
on the size of the time-step that can be taken. Such restrictions can drastically 
impair the efficiency of the algorithm particularly when applied to the calculation of 
steady-state flows, as is amply demonstrated in, for example, [l]. Moreover, 
explicit techniques can still be at a disadvantage even for time-dependent com- 
putations, because the time-step size necessary for procuring the required temporal 
accuracy is still likely to be significantly larger than that dictated by the explicit 
stability condition (especially if high-order schemes are used). This is because the 
stability limit is imposed by the local conditions in high-velocity regions of the flow 
regardless of the significance of the temporal variations prevailing there. Whereas 
the temporal variations whose accurate resolution is desired often prevail elsewhere 
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in the domain where conditions allow taking longer time-steps without impairing 
accuracy. 

If the method is to be general (e.g., equally applicable to both two and three 
dimensions), the primitive variables, i.e., density, pressure, and velocities, should be 
retained in the equations as the working variables. Of these, the density is often 
chosen to stand as a main dependent variable, wherein the pressure is evaluated 
from it via an equation of state. This approach is facilitated by the explicit 
appearance of the density in the continuity equation which may be regarded as one 
whose main dependent variable is density. Clearly, as the linkage between presstlre 
and density weakens in the low Mach number range, the technique will falter. even- 
tually breaking down in the incompressible flow limit. In this extreme. the 
variations of density cease to relate to those of pressure, thus causing the change in 
the role of the continuity equation to that of a compatibility condition for the 
velocity field. The many existing methods developed specifically for incompressible 
flows, for example, [2-51, surmount this problem by treating the pressure as a 
main dependent variable. This choice is in fact equally valid for compressible flows. 
which endows methods based on it with great versatility, as in, for example, 16, 13. 
Such versatility is often required in the computation of low- and medium-speed 
subsonic flows, particularly when the flow attains different speeds either in different 
regions or at different instants (e.g., the flow in a reciprocating engine at different 
parts of its cycle). 

In order to determine the pressure, which, while appearing in each of the momen- 
tum equations, vanishes from the continuity relation in the incompressible limit, a 
pressure equation is usually derived by joint manipulation of these equations (as in, 
for example, 16-93). The resulting pressure equation replaces the continuny 
relation while the momentum equations retain their role for determining the 
velocity held, the equation set being coupled via the pressure and velocities. 

Existing methods which solve the pressureevelocity coupled system fall into two 
categories, namely, semi- and fully implicit schemes. In the first group. the momen- 
tum equations are discretised in an explicit manner with the exception of the 
pressure gradient terms, which are treated implicitly: the continuity relarion is 
also enforced implicitly (see, for example, [2, 3] j. As a consequence, the equation- 
coupling reduces to a one-way linkage in which the pressure equation contains no 
time-advanced velocities and is hence solvable direstly. Such schemes, however, 
because of their reliance on explicit differences, suffer from the already mentioned 
time-step restrictions. In the second category, the equations are discretised fuily 
implicitly, with the coupling being handled through the use of iteration Some 
methods which fall within this group employ sequential iteration (such as the SIM- 
PLE method in [5] and SIMPLER in [S]), in which the equations for each 
variable are solved repeatedly in succession. Others utilise block iteration (such as 
the SIVA scheme in [9]), in which the variable block is solved simultaneously Co: a 
point (or a line) at a time. The advantage gained b;y implicit differencing of the 
equations is thus offset by the use of iteration which makes time-dependent 
calculations rather expensive as iteration is effected at each time-step. Moreover, 
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the iterative process can be troublesome as convergence is not always assured and 
usually requires ad hoc specification of under-relaxation. 

In this paper, a non-iterative method for handling the pressure-velocity coupling 

of the implicitly discretised fluid flow equations is presented. The method (called 
PISO for Pressure-Zmplicit with Splitting of Operators) utilises the splitting of 
operations in the solution of the discretised momentum and pressure equations 
such that the fields obtained at each time-step are close approximations of the exact 
solution of the difference equations with a formal order of accuracy of the order of 
powers of 6t depending on the number of operation-splittings used (two such split- 
tings are proposed herein). Although this order of accuracy does not necessarily 
imply that the actual errors in the solution are insignificant, nor that the overall 
scheme employing the splitting procedure will possess the same order of accuracy, 
what is important is the fact that these errors decay rapidly as 6t is relined, and do 
so as, or more, quickly than the errors embodied in the discretisation scheme itself. 
This, together with the finding that the stability of the overall scheme is little 
impaired by the splitting procedure (now depending on the choice of spatial dis- 
cretisation scheme), allows getting rid of iteration while retaining the advantage of 
implicit differencing, namely, the ability to cope with large time-steps. This is 
verified in a companion paper [lo], where the methodology is applied to the com- 
putation of both compressible and incompressible flow. 

Although the method is cast in a time-dependent form, it is also useful for steady- 
state calculations due to its stability for fairly large time-steps. For such flow, the 
method in its incompressible version shares some features with existing iterative 
schemes, namely, SIMPLER in [8] and PUP in [ 141. The main common feature is 
the use of a number of successive updates for the pressure and velocity fields at each 
pass (a time-step for PISO, an iteration for SIMPLER and PUP), in the endeavour 
to satisfy continuity and momentum simultaneously. The similarities and differences 
between the methods will become apparent when the present procedure is outlined. 
For transient flow, however, the other methods rely on iteration; whether they can 
be extended for implementation in a non-iterative, time-marching manner like 
PISO is a matter for conjecture. Furthermore, it will transpire later that the com- 
pressible version of PISO has much less in common with these iterative methods. 

In the present paper, the PISO methodology is outlined and its accuracy 
assessed; some aspects of its stability are also examined. For the sake of con- 
venience and ease of analysis, this is carried out with reference to the incom- 
pressible, isothermal flow equations. Also for the sake of clarity, the discretised 
equations used in the analysis are those which incorporate the Euler implicit tem- 
poral difference scheme, although in principle the method should be equally valid 
for other implicit schemes. The extension of the method to the fully compressible 
flow equations is then presented in the latter part of the paper. Finally, the predic- 
tor-corrector methodology is generalised to the treatment of the coupling between 
other transport equations, in particular that arising through the source terms in the 
equations for the k - E turbulence model. 



THE PISO METHOD 4; 

EQUATIONS AND DISCRETISATION 

The governing transport equations in Cartesian tensor notation, for momentum 
and continuity, are: 

and 

where, in Eq. ( l), (T;, is the stress tensor which is related in some way to the velocity 
field, e.g., by a Newtonian constitutive law or possibly by an appropriate turbulence 
model, should such an approach be chosen to stimulate the effects of turbulence 
(see Cl 11). The term Si contains the external source of momentum. 

The pressure and the density are related by an equation of state which may. in 
general, be written in the form 

where T is the temperature; for a perfect gas, d becomes l/XT. Furthermore; the 
temperature is related to the total energy, e, which obeys its own transport 
equation, which is 

In Eq. (4) $ is the diffusive flux of energy which is related in some way to e, and Q 
contains the external source of energy. 

At low Mach numbers, the density becomes weakly related to the pressure and 
Eq. (3) ceases to apply. The governing equations ( 1) and t 2) then reduce to their 
incompressible form. which for istothermal flow can be written as 

i?ui - 
 ̂

P$t+I’&z4.;u,)= -2+3+& 
I . ! i?.u, 

(5) 

and 

respectively. 
The pressure equation may be derived at this stage from the differential form of 
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the momentum and continuity equations. This practise, however, has its drawbacks, 
in that when the equations are discretised, it is not easy to ensure that all the terms 
in the pressure equation (which have their origin in the momentum and continuity 
equations) are discretised in a manner consistent with the discretisation of the 
corresponding terms in the parent equations. As a consequence of this incon- 
sistency, the pressure obtained thus may not always yield a velocity field which 
satisfies both the momentum and continuity equations simultaneously. Since 
satisfaction of the latter is a requisite outcome of the solution of the pressure 
equation,’ the aforementioned incompatibility becomes unacceptable. 

Alternatively, the pressure equation may be derived from the discretised form of 
the continuity and momentum equations. This automatically ensures that the 
pressure equation is discretised in consistence with the momentum and continuity 
equations. It is this practice which is adopted presently, and is dealt with later. 

Finite-Difjerence Formulation 

The transport equations stated above may now be expressed in finite-difference 
form. There are numerous ways of representing the spatial and temporal derivatives 
in the parent equations by discrete analogues. However, it is not the task here to 
make a choice among the alternative differencing schemes, with the exception of the 
choice of implicit differencing, as is implied by the theme of the paper. Rather, the 
thrust of the study is to deal with the method of solving the difference equations, 
and in order to facilitate easy and clear presentation of this, the discretised 
equations are formulated here using the Euler implicit difference scheme. It should 
be emphasised, however, that the method of solution itself, and the related analysis 
presented herein, is not restricted to the use of that particufar scheme. 

Also for the sake of convenience, a symbolic operator form, which caters for most 
of the widely used spatial difference formulae, is employed here in presenting the 
discretised equations. Thus, if IZ and II + 1 denote successive time levels, then for 
compressible fluids the governing equations (1), (2), and (4) may be expressed in 
difference form for each mesh point as 

l J(p14Jfl+l St’ -(pUj)n3=H(U;+*)-dipN+~+Si 

L& (pm+’ - p”) + d;(plfJ” + 1 = 0 

(7) 

(8) 

and 

’ f(pej~~+l 
5’ 

- (pe)” ) = G(e” + ’ )-~1,(pu,)“+‘+Jjur+‘)+Q (9) 

’ Satisfaction of the continuity relation may still be achieved in this case by iteration on the pressure 
and momentum equations-a process which the present paper sets out to eliminate. 
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respectively. In Eq. (7), the operator H stands for the linite-difference representation 
of the spatial convective and diffusive fluxes of momentum, and the operator di, 
which also appears in Eq. (8) and (9), is the finite-difference equivalent of 17/L;‘;,. 
The operator G in Eq. (9) stands for the discretised convective and diffusive fluxes 
of energy, while operator J contains the stress work terms. Operators H and G. in 
general, take the form 

and 

G(e) = B,,e, 

where suffix m is a grid node identifier and the summation is over all the nodes 
involved in the formulation of the finite-difference representation of the spatial 
fluxes. This formulation also determines the expressions for the A and B coefficients, 
which are functions of the velocities, densities, etc. Operators H and G are. 
therefore, non-linear and to enable the solution of Eq. (7) to (9), linearisation afthe 
operators may be adopted. Alternatively, since a splitting procedure is to be effected 
to the various terms in the equations, the very same splitting can also be applied to 
the coefficients ,4 and B in expressions (10) and ( 11). For the purpose of the present 
study, and in order to make the analysis tractable, the rl and B coefficients are 
assumed to be constant over the interval 62, thus effectively linearising operators H 
and G. 

The pressure equation may now be derived by taking the divergence of Eq. (,7) 
and substituting for ~4; (p~~)~+’ in Eq. (8) to get 

--pn)+4i(pui)ll+St14iH(u:‘f1)-4j’p”+’+4,Si~=~ (13i L? 

which. when rearranged, becomes 

Equation (13 ), which replaces Eq. (8), is Poisson type in which ;1: is the Laplacian 
operator in difference form. This equation serves for determining p”+ ‘, while 
Eq. (7) retains its role for the velocity field ~1;: + l. Clearly, Eq, (7) and ( 13) are 
linearly coupled through the appearance of p”’ ’ and u:+’ in both: it is rhis 
coupling which is addressed in the present paper. 

Similarly, for incompressible fluids, the discretised analogues of the transport 
equations (5) and (6) may be expressed in the same operator notation used above 
as 

-~1)=H(u:‘+~)-,~~p’~+~+S~ ( 14) 
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and 

The corresponding pressure equation which is derived by taking the divergence of 
Eq. (14) and substituting Eq. (15) is 

(16) 

Equations (14) and (16) are those which respectively determine the velocity and 
pressure fields in incompressible flow. 

METHODOLOGY FOR INCOMPRESSIBLE FLOW 

Preandle 

For ease of presentation, the proposed split-operator scheme (PISO) is first 
applied to the incompressible flow equations; this also renders the accuracy analysis 
of the procedure more tractable. Extension of the method to the compressible 
equations is made later in the paper. 

The operative equations for the incompressible flow case are Eq. (14) to (16), 
which are coupled through the appearance of the time-advanced 11~ and p in them. 
The present paper is preoccupied with handling this coupling of the equations 
rather than with methods of solving the simultaneous scalar sets of equations for 
the individual variables. It is, therefore, assumed that suitable standard methods 
(e. g., direct, iterative, or ADI) may be employed for the solution of equations like 
(14) and (16) when these are decoupled in variables as effected by PISO. 

Operator-Splitting 

The splitting of operators (or factorisation) is not a new concept and is often 
invoked either in temporal differencing as in [l] or in the solution of the discretised 
equations as in the AD1 technique [12]. The principle is here extended to apply to 
the coupling between variables, namely, the pressure and velocity, whereby 
operations involving different variables are split into a series of predictor-corrector 
steps. 

Let the superscripts *, **, and *** denote intermediate field values obtained 
during the splitting process. The equations can hence be factorised as follows: 

(a) Predictor Step. The pressure field prevailing at t” is used in the solution of 
the implicit momentum equations (14) to yield the zl* velocity field. Thus 

5 (24: - f4i’2) = H(z4”) - A;p” + si. (17) 
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Equation ( 17) is solvable by one of several standard techniques to yield the UT field 
which, it should be noted, will not in general satisfy the zero-divergence condition 
(15). 

(b) First Corrector Step. A new velocity field, II**? together with a 
corresponding new pressure field, p*, are now sought such that the zero-divergence 
condition 

3 u**=o I I (ix) 

is met. For this, the momentum equation (14) is taken as 

which, it should be noted, is of explicit type in that H(ui) is taken to operate on the 
UT field for reasons which will become apparent shortly. Equations (IS j and ( i9) 
are used to derive the pressure equation 

which is readily solvable since the right-hand side contains terms in the known field 
uiy’, and this is the consequence of using the explicit form of Eq. (19). The p* field 
obtained by solving Eq. (20) may be inserted into Eq. (19) to yield the zt,** field> 
which, it should be recalled, satisfies the zero-divergence condition ( 18 ). 

(Cj Secord Corrector Step. A new velocity field, uF**, together with i$ 
corresponding new pressure field, p**, are formulated, such that 

4.u”**=@ I i [2! \ 

The operative momentum equation is now taken as the explicit-type equation 

; ill”** -U;)=H(u”*)-4,p**+Si. (321 

The corresponding pressure equation is therefore 

4;p** = d[H(u”*) + diS, +$4,-q. (23) 

From Eq. (23), the p** field can be readily determined since the right-hand side of 
the equation is known, and with this new pressure, the LIT** field can be evaluated 
from Eq. (22). 

More corrector steps such as the above can obviously be introduced. However, 
as will be shown later, the accuracy with which u,f+** and p** approximate the 
jSL 63 1-i 
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exact solution U; + i and p” + ’ of Eq. (14) and (16) is sufficient for most practical 
purposes, which makes further corrector steps superfluous. On the other hand, it 
will also be shown that a minimum of two corrector steps must be taken before the 
velocity and pressure fields thus obtained can be legitimately regarded as solutions 
to Eq. (14) and (16). 

Accuracy and Stability Considerations 

The methodology presented above yields pressures and velocities which are only 
approximations of the exact solution. The task now is to analyse how accurate 
these approximations are. This is possible only in relation to a linearised form of 
the finite-difference equations. The findings in what follows should therefore be 
treated merely as guidelines indicating the likely performance of the method which 
has to be ultimately tested in actual computations. The heuristic analysis carried 
out (much of which is not presented here for the sake of brevity) is indeed intended 
for this purpose rather than to furnish general proofs, which are unlikely to apply 
to the actual non-linear equations. The analysis includes two approaches, the first 
of which is based on a Taylor series analysis. This provides an indication as to how 
the errors introduced in the splitting might decay with 6t (with the spatial mesh size 
kept finite). Also presented is a separate examination of the influence of a non- 
vanishing velocity-divergence field on the pressure solution. 

Let si and 5 be the errors in approximating the velocity lli and pressure p at any 
stage in the splitting. Hence, define 

where k stands for any one of the superscripts *, **, or ***. Similary, define 

~Lpfl+ILpl (25) 

where I stands for any one of the superscripts II, *, or **. If 147+ ’ and pn+ ’ are to be 
approximated by 11” * * and p**, the error introduced will then be sI*** and t**, 
respectively, which ideally should be of the same order or smaller than the 
discretisation’ errors introduced in the formulation of the finite-difference represen- 
tation of the parent equations. 

To begin with, Eq. (17) of the predictor stage is subtracted from the original 
momentum equation (14) to give 

2 Discretisation errors should be distinguished here from truncation errors which are the errors in the 
representation of the individual terms in the differential equations (see [13]). In general, discretisation 
errors are one order higher than truncation errors. 
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where, because H is linear, it has been possible to replace the term H( $‘+ ’ j - 
H(u:) by H(E”). Now 

which becomes, when p is expanded by Taylor series in i 

5” = p” + O(6t) - p” = O(6t) 

where O(st) indicates the order of truncation errors. It then follows from Eq. i26) 
that 

E” = O( 6t’). 

The equations governing the first corrector step are (19) and (20) which, when sub- 
tracted from the original equations (14) and (16), give 

r,:*=,(&:)-Ai5* 
6t 

(IF) 

and 

Aft* = AiH(&” j. i28) 

Since it has just been found that E,? is of the order 6r’, Eq. (38~ dictates that <* is 
also of O(b‘r’), while Eq. (27) now gives CT* as O(br3). 

Similarly, the second corrector equations (22) and (23), subtracted from Eq. i 14) 
and (16), are 

gcx**=H(&**)-Ji<** 
bt l 

(29) 

and 

Aft** = A,H(&,%* j. (30) 

Equation (30) reveals that since ET* is O(dt3), then <** is also O(6r’). Con- 
*** sequently. Eq. (29) leads to the result that E[ is 0(6t4). Thus, it has been shown 

that the approximations of the exact u;+’ and p”+’ fields produced byr the two- 
corrector stage splitting are good to O(6r”) and O(C’~$). respectively. Evidently: if 
more corrector stages are introduced, the order of accuracy is increased by one for 
each additional stage. However, since the original discretised equations themselves, 
i.e., (14) and ( 16), contain discretisation errors (of O(6f3) for second-order-accurate 
schemes and of O(6t’) or first-order ones), the endeavour to achieve higher 
accuracy in the solution of these equations appears to be unnecessary. 

So far, the accuracy of the splitting technique has been examined in terms of a 
Taylor-series-based order of accuracy analysis. This analysis. however, is insuffkient 
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in that it is not always indicative of the absolute magnitudes of the errors involved. 
In what follows, there is a closer examination of the origins of errors arising in the 
determination of the pressure field. 

Consider the pressure equation (16) in the absence of momentum sources and 
when the velocity field at t” is divergence free; this is done here on the grounds of 
convenience and should not in any way invalidate the findings. Thus 

Afp ” + l = j JqZ(:-’ + 1). (31) 

The operator H given by expression (10) is a linear combination of the ui)s pre- 
vailing at each node in question and its neighbours. Insertion of expression (10) 
into Eq. (3 1) gives 

The right-hand side of Eq. (32) can be decomposed’ into 

A~(A,GJ = A,,, Aiz~i.nz + 4.m AiA,, (33) 

where the bars on A and zdi denote suitable averages over the cluster of nodes 
involved in the spatial difference scheme defining expression (IO). Since continuity 
demands the vanishing of the divergence of the velocity field everywhere, the dizii 
term in expression (33) vanishes, resulting in 

A;p”+‘=zi;” A,A,,. (34) 

Thus, the pressure field can be seen to be generated by gradients in A4, which are 
the coefficients in the finite-difference representation of the convective and diffusive 
fluxes for which H stands. 

Consider now the corresponding pressure equation of the first corrector step, i.e., 
Eq. (20), in the absence of sources. With the aid of relation (33), the equation can 
be written as 

A?-p* = ii;,,, A,A, + A,,, Aiu$, (35) 

where the term diuT is the divergence of the predictor step velocity field 11: which, 
in general, does not vanish. Evidently, this is an error term as comparison of this 
equation with the exact one (34) will reveal. This implies that the p* field can be 
dominated by mass errors generated in rhe intermediate stages of the calculation, 
errors which are often larger than the weak gradients of ,4 that are responsible for 
setting up the pressure field. Hence, although p* is apparently a second-order- 

3 This is the finite-difference equivalent to 
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accurate approximation of p” + ‘, Eq. (35) shows that it may still be a very poor 
solution. 

Consider, on the other hand, the pressure equation (23) arising in the second 
corrector stage. With the aid of relation (33), it can be rewritten as 

- 
Llfp ** = lq$ A,A,, + A,,, d$,T,,T 

which, because the continuity equation (18) is satisfied, reduces to 

A?p** = ii;,; A,.4 m . (36) 

It is apparent that Eq. (36) is free from the mass errors which predominate in 
Eq. (35), and that the p ** field is generated solely by gradients in A as it should be. 
It is for this reason that at least two corrector stages must be implemented In order 
to obtain accurate pressures. 

AS for stability, the finite-difference scheme defined by Eq. (14) and (16) is M/y 
implicit; the system would therefore be unconditionally stable if these equations 
were to be solved exactly. However, as the solution to the equations is achieved 
approximately, the residual errors in these approximations may alter the stability 
characteristics of the overall scheme. No attempt will be made here to rigorousiy 
analyse the stability of the method as this is dependent in the first instance on the 
particular spatial difference scheme used in arriving at the discretised equations. In 
any event, the stability of the overall method will be greatly affected by the non- 
linearity of the actual system of equations solved which is bound to impose its own. 
restrictions on the time-step size. Nevertheless, a simple stability analysis such as 
the one that follows serves to illuminate some pitfalls and ways of circumventing 
them. 

It is postulated here that if the product of the error amplification factors (in a 
von Neumann stability analysis) associated with each of the predictor and corrector 
steps is less than unity, then the overall linearised scheme is unconditionally stable. 
Inspection of the predictor step equation (17) reveals that it is implicit in :iF and 
always has an error amplification factor of less than unity. The corrector step 
equations (19) and (22), however, are explicit-like In which ui may be construed as 
being advanced in a pseudo-time corresponding to the starred operations, wherein, 
the convective and diffusive fluxes (lumped into H) are evaluated at some mter- 
mediate pseudo-time (star) level. These equations can therefore have error 
amplification factors, defined as E**/E* and e,***,:sT* and obeying Eq. (27’) and. 
(291, of greater than unity. It is easy to show that for a simple one-dimensional 
linearised equation in which either a first-order upwind or a cencred spatial dif- 
ference scheme is used, the amplification factors for Eq. (27) and (29) are less than 
unity only if the time-step size is smaller than a certain value. This ar threshold is 
comparable to the corresponding values relating to an explicitly differenced 
momentum equation. Thus, for time-steps larger than this threshold (which is the 
reason for using implicit methods in the first instance): the above splitting lea& to 
departure from the exact solution of the difference equations over the time-step. 
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Although this may not undermine the stability of the overall scheme (except for 
very large Jt), it can result in significant deterioration in accuracy, as was indeed 
found in practice. 

To remedy the situation, the corrector stage equations are replaced by ones 
which are intrinsically more stable (i.e., with smaller amplification factors). The 
simplest way of doing so without losing either versatility or accuracy is to separate 
the central (i.e., diagonal) element of the operator H and shift it to the left-hand 
side of the corrector stage equations where it is treated implicitly, while the rest of 
the elements are retained on the right-hand side where they are still treated 
explicitly. Thus, if the central element in expression (10) is A,ui, then define H’ as 

H’(q) = H(u;) - A,,uj (37) 

where A, is the central coefficient which for most practical spatial difference 
schemes takes a finite negative value. Equations (19) and (20) of the first and 
second corrector steps are therefore replaced by 

and 

‘P t ) fit-& .*** -~uf=W’(u**)-dip**+Si 

respectively. 
An examination of the error propagation properties of Eq. (38) and (39) using 

the same spatial difference schemes, as was done for Eq. (19) and (22), shows that 
the new equations possess much smaller error amplification factors for the same 6t 
(in particular, in the case of upwind spatial differencing, it is less than unity uncon- 
ditionally). It can also be shown, as is done in the Appendix, that the formal order 
of accuracy of the splitting scheme remains unaltered by the introduction of 
Eq. (38) and (39) in place of Eq. (19) and (22). In practice, however, the accuracy 
of the new formulation (compared against the exact solution of the difference 
equations) was found to be significantly better, especially for large 6t, than the 
initial formulation. 

Final Forrnuhtion 

Presently, the final form of the operator-split equations, including the 
modifications deemed necessary by the accuracy and stability consideration presen- 
ted above, will be stated. Before doing so, however, one final consideration must be 
taken into account. 

In practice, the velocity-divergence field d,u: may not vanish exactly at all times 
for the following reasons: either (i) the initial conditions do not satisfy continuity, 
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or (ii) the pressure equation is not solved exactly at each time-step’. The term d iz$ 
should therefore be retained in each of the pressure equations solved, otherwise 
mass errors may accumulate during the calculations. Alternatively, the operator- 
split equations can be re-cast into ones in terms of increments of variables rather 
than in terms of their absolute values. This eliminates the 4;~; term, as weii as 
other terms (such as the sources) from the equations. hence minimising the com- 
puting effort and storage requirements. The final equations are now as follows. 

(a) Predicror Step. The momentum equation for u,? is carried over from 
Eq. (t7). With the introduction of the H’ operator in Eq. (37), it can be rewritten as 

This implicit equation is solved for ~7. 

(b) First Correcror Step. The operative momentum equation (38) is transfor- 
med by subtracting Eq. (40) from it to 

( ) -$A, (u** -u”)= -dj(p*--pnj 
/ 

which may be regarded as a velocity-increment equation. When the divergence of 
this equation is combined with the continuity relation (18), the following pressure- 
increment equation is obtained: 

Equation (42) is solved for the (p* - p”) field. which is then inserted into E.q. (41) 
to get the new velocity field, UT*. 

Second Corrector Step. Subtraction of Eq. (40) from the momentum equation 
(39) governing this step gives 

( > 
P-/lo (u***-tl”*)=H’(u**-u”‘l-3;(p**-p*). 

\, dr 
(33) 

This equation, combined with the continuity relation (3i), yields the pressure- 
increment equation 

4 This occurs when the equation is solved by one of the standard iterative methods. in which case the 
solution is converged to only within some specified convergence cri.?erion. 
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Equation (44) is solved for the (p** 
with Eq. (43) to obtain 11~ 

- p*) field, which is then used in conjunction 

the u*** and p 
*** This completes the splitting process at which stage . 

* * fields are taken to stand for the exact solution UT + ’ and p”+ I. 
At ‘this stage, it is appropriate to compare the incompressible version of PISO 

just presented with other apparently similar, though iterative, schemes such as 
SIMPLER [S] and PUP [14]. Both of these were developed for steady-state 
calculations, although they may be applied to transient flows whereby iteration is 
used at each time-step. In particular, PUP can be shown to have a close resem- 
blance to PISO, the main difference being the absence of a final velocity update in 
the former. Altough the differences may seem superlicial, they are of significance. 
For, whereas the final velocity and pressure fields for a time-step in PISO, i.e., UT** 
and p**, satisfy the one and same momentum equation (39), the same is not true 
for the fields obtained at the end of one iteration of either of the other two methods. 
It is, therefore, debatable whether these fields can be regarded as legitimate 
approximations to the solution of the difference equations over the time step (as in 
PISO). 

BOUNDARY CONDITIONS 

Two types of boundary conditions are encountered in practical fluid flow 
problems, these are prescribed velocity (or its gradient) and prescribed pressure 
boundaries. The splitting procedure handles both of these constraints with ease, 
especially when employed in conjunction with a staggered mesh arrangement as 
that used in, for example, [2, 51. In what follows, the decoupling of the variables at 
the boundaries is discussed. 

When the velocity at the boundary is prescribed (here only the velocity com- 
ponent normal to the boundary is of concern), all intermediate values of ui at the 
boundary, namely, ld:, UT*, and ii***, are set to the given boundary value. From 
Eq. (41 j and (43) it follows thatIdi(p* - p”) and d,(p** - p*) are zero at that 
boundary; these serve as boundary conditions for the pressure-increment equations 
(42) and (44). It should be noted, however, that the latter equations possess a 
solution only when the algebraic sum of the right-hand side of each of them over 
the whole field is zero. This condition corresponds to the satisfaction of overall con- 
tinuity across all the boundaries of the domain, and this must be ensured at each of 
the splitting stages. 

Alternatively, if the pressure at the boundary is specified, then p* and p** are set 
to the prescribed value, which serves as the boundary condition for Eq. (42) and 
(44). The normal velocities at the boundaries are updated in the usual manner 
using Eq. (41) and (43). 
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GENERALISATION TO COMPRESSIBLE FLOW 

In what preceded, the method of splitting of operations was applied to the 
incompressible flow equations. Presently, the technique is to be generahsed to 
encompass the compressible flow equations as well; this generalisation in principle 
is unrestricted to any particular Mach number regime. The equations for which a 
solution is sought now are Eq. (7), (9), and (13), the last of which embodies the 
continuity relation (8). The auxiliary equation of state (3 ) which couples together 
the pressure, density, and temperature (hence energy) must also be invoked. The 
splitting of these equations follows directly from the final formulations arrived at 
earlier for incompressible flow. However, because the coupling between the 
equations now involves the density and temperature, an additional corrector stage 
must be incorporated to achieve the same formal order of accuracy as with the 
linearised incompressible case (i.e., O(6t3) discretisation errors j. This level of 
accuracy may often be higher than that of the temporai difference scheme used, in 
which case the use of such high-accuracy solution algorithm becomes unwarranted 
in view of the additional effort involved. Alternatively, a simpler but lower-order 
scheme involving only two corrector stages may be implemented. This latter scheme 
has proved to be of satisfactory accuracy as tests in [lOI verify. Such a finding is in 
Sine with the earlier reasoning presented for the incompressible flow case that the 
merits of the present technique stem largely from its ability to resolve a pressure 
heId free from the influence of errors in the divergence of the calculated velocities, a 
feature which is carried over to the compressible flow case. 

In what foilows, both the two and three corrector stage schemes are presented 
unaccompanied by an accuracy analysis of the kind presented earlier. Such an 
analysis has been carried out for the case of a perfect gas but proves to be too cum- 
bersome for presentation here. The results of the analysis show that the two-srage 
method gives velocity, pressure, and temperature fields which differ from the exact 
solution by terms of 0(6t”), while the three-stage scheme reduces these errors to 
O(6t3 ). 

Ttr!o-Stuge Schenze 

(a) Monlentmn Predictor Step. The equation for momentum (7 ) is solved in thus 
step implicitly, using old time pressures and densities. as 

The solution of this equation yields u,?. 

(b) First Momentum Cowector Step. The momentum equation is now written in 
the explicit corrector form 

1 4 
! > z-p” P u, * **=H’(u:)-dip*+S,+Qt! (SO) 
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which, by subtracting Eq. (45) from it, can be re-cast in incremental form as 

The continuity equation (8) is now taken as 

d;(p*ui**) = -; (p* -/cl”). 

Taking the divergence of Eq. (47) and invoking Eq. (48) gives 

(48) 

(49) 

where p* must be eliminated in favour of p* to enable the solution of the equation. 
This is done by writing the equation of state (3) as 

p* = p*qqp’r, T’). (50) 

Substitution of Eq. (50) into (49) yields 

Equation (51) is the required pressure-increment equation which, when solved, 
yields the p* field. Equations (50) and (47 j may then be used to determine p* and 
U* *, respectively. 

(c) Energy Predictor Step. The energy equation (9) may now be solved in the 
implicit form 

( 1 ‘-if!? p*e*=G’(e*)-d,(p*u**j+Jcu~*)+~+~ 6t p* (52) 

where the operator G’ has been introduced to denote the remainder of operator G 
after the central element (I&e) has been extracted from it. This central element is 
taken to the left-hand side of the equation in keeping with the practice adopted for 
momentum and explained earlier. The value T* can now be evaluated from e* and 
u** I . 

(d) Second Momentum Corrector Step. For this step, the momentum equation 
is 

(53) 
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J! 

which, in incremental form, becomes 

p**u:** - p*u** = (p$-‘{ H’(u**-uT)-,4,(p**-p*) 

6)*-/f 1 --A, ___ 
( i P" “**I’ 

(54) 

By combining this equation with the continuity relation 

di(p**u;**j = -k (p** -p”) ijjj 

the following pressure equation is obtained 

In arriving at the last equation, the following equation of state has been invoked: 

P ** = p**qqp*, T* ). \57) 

Solution of Eq. (56) yields p**> while Eq. (57) and (54) are used to evaluate ,a*+ 
and ztF**, respectively, which together with T* are taken to represent the fi& 
values’ at the new time level n + 1. 

Three-Stage Scheme 

As stated earlier. the formal order of accuracy of the two-stage scheme abGve is 
second order (in discretisation errors). To achieve a higher formal order of 
accuracy, an additional correction stage has to be introduced to the steps already 
presented above. Thus, the T”, u***, p**, and p** fields are to be updated 
according to the following procedure. 

(e) Energ), Corrector Step. In this step. the energy is updated using the expiicit 
equation 



58 R. I. ISSA 

It is more convenient, however, to use the incremental form (obtained by sub- 
traction of Eq. (52) from (58)) 

(-&-$) p**e** - (h-3) p*e* = - A,[u,***p** -zQ*p*]. (59) 

The temperature T** is evaluated from e** and .I***. 

(f) Third Momentum Corrector. Step. In this final step, the momentum equation 
is now written as 

p***u,:: = H’(u”*)- A,p*** + Si + t% 
6t 

which, in incremental form, becomes 

P ***,,E -p*“24*“* - -(h-+)-l{ -di(p***-p**) 

The continuity relation is now written as 

(61) 

Combination of Eq. (61) and (62) gives the pressure equation 

[Ai{ (t-~)-ld;}-“‘“*‘8t’“‘l (p***-p**) 

+p;M~**, T**)-gl(p*, T*)l i63) 

where the equation of state 

P *** - - p***d(p**, T**) (64) 

has been used in arriving at Eq. (63). 
Equation (63) now yields p***, while Eq. (64) and (61) give p*** and u,?“, 

respectively. This completes the splitting whereby the latest computed fields are 
now regarded as the final solutions to the original equations (7) and (8) (9), and 
(3). 

Here, the resemblance between PISO and the iterative SIMPLER [S] and PUP 
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[14] becomes much more remote than is the case for incompressible flow. The non- 
iterative strategy of PISO adjusts the mass-velocity as a whole at each stage to 
satisfy continuity and momentum simultaneously. In contrast, the other methods 
either update the density at the end of the iteration or introduce a density correc- 
tion (but only in the continuity equation), both practices of which demand 
iteration. 

CENERALISATION OF THE METHOD TO OTHER EQUATIONS 

The splitting procedure has so far been applied to the equations of motion only. 
It is often the case that other scalar transport equations have to be solved in con- 
junction with those for motion, e.g., equations for the turbulence kinetic energy, km 
and its rate of dissipation, E. which arise in the well-established k - E model of tur- 
bulence (see [ 11 I). These equations are usually coupled strongly together. 
especially through the source terms. As the splitting method presented earlier does 
away with iteration, a non-iterative scheme must also be developed to deal x&ith 
these other equations such that the accuracy and stability of the overall scheme are 
preserved. Indeed, it is often the case that it is the poor resolution of these scalar 
fields that undermines the integrity of the overall solution procedure. 

In this section. a generalisation of the splitting technique to the solution of 
implicitly discretised scalar equations that are coupled through source terms is 
proposed. The method is illustrated by application to the k and E equations of the 
aforementioned turbulence model. These equations in differential form are 

and 

(66) 

where r is a diffusion coefficient for the quantities k and s. The source terms S,. and 
S, couple the above equations strongly, and take the form 

s, =pg-ppe 1671 

S, s C, g/lEi:k - C,pe’!k it%) 

where g is a generation term (related to the velocity strain field), and ,u is the tur- 
bulent viscosity which is related to k and E via the relation 

p = c,, !c 
& (69) 

The quantities C,, C2, and C,, are empirical coefficients in the turbulence model. 
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When the above transport equations (65) and (66) are implicitly discretised (here 
again the Euler implicit scheme is used for convenience), the resulting finite-dif- 
ference equations take the form 

(70) 

and 

1 ij,:(P&)“+’ -(p&)‘z)=L(E’~+1)+(Clpg&~k)‘~+~-(C2pE2/kjn+1 (71) 

where the operators K and L represent the discrete analogues of the convection and 
diffusion terms in the parent equations. The task now is to develop a splitting 
scheme which will enable the non-iterative solution of these equations, given the 
coupling between them via the sources S, and S,. 

For simplicity of presentation, it will be assumed that the solution of k and E will 
not affect the equations of motion. This would be the case if the latter equations are 
solved based on the old time level turbulent viscosity. Hence, the quantities gnc’ 
and p” + ’ in Eq. (70) and (71) will be treated as known and are determined by the 
solution of the momentum, continuity, and energy equations. Equations (70 j and 
(71) are now rearranged, first by taking the central elements from the K and L 
operators and shifting them to the left-hand side of the equations (in keeping with 
the practice adopted for the equations of motion). Second, by invoking relation 
(69), the source terms S, and S, in expressions (67) and (68) are transformed into 
the forms 

and 

S,=C,C,gpk-C,C,p’iz 

(72) 

which are more suitable for the splitting to be introduced than their original coun- 
terparts. With those changes introduced, Eq. (70) and (71) now become 

and 

k n+l 

$-Du+Gc,~~--;;;i E 
> 

n+l=L’(e”+‘)+C,gC,pk”+L+~ 175) 
P 
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where K’ and L’ are the spatial flux operators minus their central elements C,ic and 
Do&, respectively, which now appear on the left-hand side. Also shifted to the lefi. 
side of the equations are the negative contributions of the source terms; this is to 
ensure that negative values for k and I: (which is a non-physical solution) are never 
generated. Note that the unsuperscripted quantities in Eq. (74) and (75) are known 
and pertain to time level n + 1. The solution of these equations by operator-sphtting 
can now be achieved as follows: 

Predictor S~IY~. The above equations are effectively decoupled by writing them 
a!?‘ 

pv ---i!k” 
P 

k*=K’(k*)+png ; p;” 

and 

(76) 

Equations (76) and (77) are implicit ink* and E*, respectively, and are to be solved 
in that sequence. 

The viscosity ~1” can now be calculated from 

p*=c,,,$ (78) 

Corrector Step. The corrector equations for k and s are explicit-like and take 
the forms --Co+pZC,k’ P 

Jr P* 
k**=K’(k*)+/l*g ; p”k” cSt 

and 

It is more convenient to use an incremental form of Eq. (79) and (SO) by sub- 
tracting Eq. (76) and (77) from them. Thus 

and 

&** = i-D,, + C&p’f$ i-D,, + C2C,,p$js* 

+ C*pC,g(k** -k*) 1 
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Equations (81) and (82) yield the new values of k** and E**. The new viscosity is 
now given by 

k**2 
P **=c,p- 

E** . (83) 

It can be shown that k** and E** are second-order approximations (in Sr) to k”+ I 
and s”+ ‘. It is possible, though often unnecessary, to introduce further corrector 
stages along the same lines outlined above in order to increase the accuracy. This, 
however, is not presented here, as the derivation follows closely that given above. 

CONCLUSIONS 

In what preceded, a non-iterative method of handling the pressure/velocity 
coupling arising in the implicitly discretised fluid flow equations is presented. This is 
accomplished by the splitting of the process of solution into a series of predictor 
and corrector steps such that, in each step, simplified equations result, whose 
solutions can be achieved by existing standard techniques. The fields obtained at 
the end of these steps are approximations to the exact ones with a temporal 
accuracy comparable to, or better than, the accuracy of the discretisation scheme 
used for deriving the finite-difference analogue of the original differential equations. 

The method is outlined initially by application to the incompressible flow 
equations, and, although the presentation was confined to equations discretised 
using the Euler implicit scheme, the method can, in principle, be generalised to 
include other temporal differencing schemes. The accuracy of the solution is 
analysed for this case and it is shown that the errors in the solution of the linearised 
difference equations for pressure and velocity are of the order 6t3 and St’, respec- 
tively. 

The method is then extended to the implicitly discretised compressible flow 
equations, albeit also discretised by the Euler implicit scheme. Two versions of the 
method, one with two corrector steps and the other with three, are presented. The 
accuracy of these versions (with a perfect gas assumption) has been analysed 
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Finally, a generalisation of the technique to deal with other scalar equations is 
proposed. The algorithm is illustrated by application to the source-coupled 
equations of the k - E turbulence model. This development has been partially tested 
with much success and the work will be reported upon completion. 

APPENDIX 
ACCURACY CONSIDERATIONS OF THE FINAL FORM 

OF THE SPLITTING SCHEMF 

In the text, the temporal accuracy of the initial formulation of PISO is assessed. 
That formulation is modified upon further consideration of the stability of the 
splitting procedure, thus leading to Eq. (38) and (39) in place of (19) and (20). The 
task is to examine the consequences of the modification (namely, the implicit treat- 
ment of the central element in the finite-difference expressions for the convective 
and diffusive fluxes in these equations) on the accuracy and consistency of the 
scheme. 

The predictor-stage equation is unaltered and the argument presented in the text 
is valid here also. Hence, the error in the u” field is 

ET = O(cv). 

The new forms of the first corrector error equations (corresponding to Eq. (27 ) and 
(28) in the first formulation) are now 

and 

(A.2) 

In Eq. (A.2), it is clear that t* vanishes with 6r at the same rate as E”, i.e., <* 
vanishes as 6r’. As a result, the right-hand side of Eq. (A.1) vanishes as 6t’. This 
implies that (p/&-A,,) .sT* must also vanish as 6t2, a condition which can only be 
satisfied if ET* vanishes as 6t3. Similar arguments lead to the conclusion that <** is 
O(dt3j and .s:** is O(6t’). This shows that the temporal accuracy of the scheme is 
unaffected by the introduction of Eq. (38) and (39). 

So far, attention has been confined to the temporal accuracy of the spiitting 
scheme with the implicit assumption that the spatial mesh size is kept finite. Unlike 
the initial formulation of the scheme, however, the final scheme raises the question 
as to whether an inconsistency is introduced by the implicit treatment of the cenrral 
element A,,ui of the H(ui) operator in the corrector stages. An analysis of this 
problem is very difficult in the context of the scheme, as the intermediate solutions 
581 62, I-5 
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uir u** 17 I 7 etc., do not relate to a precise time level, but are approximations to the 
exact solution u;+’ of the finite-difference equations, which themselves are 
approximations to the parent differential equations. Only a heuristic analysis of this 
question can therefore be offered here. 

First, it is taken that the temporal and spatial discretisation schemes used in 
arriving at the finite difference equation (14) result in consistency with the differen- 
tial equation (5). Next, it is assumed that the exact solution to Eq. (.5) is Ui and P. 
Now, the final fields obtained from the splitting procedure are UP** and p** which 
obey Eq. (39). The truncation error in this equation is therefore the remainder in 
the equation when U;! + L and P”+l are substituted for UT** and p*** (see [13]). A 
problem arises here in that uF*, which also appears in the equation, cannot be 
related to the exact solution L$I+l, though it is supposed to be an approximation of 
it. 

Equation (39) is first manipulated into the form 

P 
P 

***-Pu:‘=H(l~~**)-H’(~***-~**)-Adip**+Si 
St (A.3) 

whereby use of Eq. (37) has been made; also, the definition of Ed in Eq. (24) is 
invoked. Comparison of Eq. (A.3) with Eq. (14) reveals that the term 
H’(Ei ***--ET*) is an intruder into (A.3) and can be the cause of inconsistency. 
Indeed, substitution of the exact solution Us + l, Pni ’ into the equations, and 
taking 6t and 6.~~ (the spatial mesh size) to zero, gives the truncation error R as 

R= H’($** -ET*), 6r, 6Xi -+ 0 (A.4) 

where the fact that the discretised equation (14) is consistent with the differential 
equation (5) has been used. Consistency demands that R should vanish, and this 
depends on the nature of the spatial difference scheme which defines H’ and on how 
cj vanishes as the mesh is refined. 

In the absence of precise knowledge about c,?* and E?**, a supposition is now 
introduced. It is that, as inferred earlier, E”* and e*** va;ish as 6t3 and St4, respec- 
tively, indepently of 6.x;. Once this is accepted, thl truncation error in (A.4) can be 
shown to reduce to 

R= &(E*** - EF*), dt, 6x, + 0 (As) 

where definition (37) has been invoked. It can be inferred from expression (A.5) 
that R is dominated by &jC* (which is of lower order than ET**) and should 
therefore vanish as Aoci **. Since ET* is O(dt’), then R vanishes as A0 6t3. Now, A, 
is a coefficient in the spatial difference analogue of the convective and diffusive 
fluxes; it contains terms in l/bx,. For consistency, therefore, A; l must not vanish as 
fast or faster than 6t3. 

Typically for the upwind scheme, for example, A, = - [(pu,/Gs,) + (&/&Y~)]. 
Hence, R vanishes as dt3/&ri. For a centred scheme, R vanishes as dt’ldxf. In both 
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cases, the truncation error vanishes at a faster rate with 6t than with &xi. This is 
useful, since in practical computations 6t is usually taken (.in the worst event) as 
proportional to &xi in which case R goes to zero and the above schemes are con- 
sistent with the differential equations. 
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